
Math 251 Final Exam (Practice)

Name:

This exam has 12 questions, for a total of 120 points.

Please answer each question in the space provided. Please write full solutions, not just
answers. Cross out anything the grader should ignore and circle or box the final answer. As
always, watch out for typos and errors. If you notice any, please let me know.

Question Points Score

1 6

2 8

3 10

4 8

5 12

6 10

7 12

8 10

9 12

10 8

11 12

12 12

Total: 120



Question 1. (6 pts)
Find all possible values of a so that the plane

ax+ y = 1

forms a angle of 45 degrees with the line

x− 1

2
=
y

2
= z − 1

Solution: A normal vector to the plane is

n = 〈a, 1, 0〉

and a direction vector of the line is

v = 〈2, 2, 1〉

The angle between the line and the plane is π/4, therefore the angle between n and
±v is π/2 − π/4 = π/4. (We need either v or −v to form an angle of π/4
with n, since the angle between a plane and a line is always acute.)

So √
2

2
= cos(π/4) = ± n · v

|n||v|
= ± 2a+ 2√

a2 + 1
√

4 + 4 + 1

Square both sides (and we can get rid of the ± sign after that) and simplify

a2 − 16a+ 1 = 0

Therefore, when a = 8± 3
√

7, the plane

ax+ y = 1

forms a angle of 45 degrees with the line

x− 1

2
=
y

2
= z − 1

2



Question 2. (8 pts)
Determine whether

lim
(x,y)→(0,0)

x2 + sin2 y

4x2 + 3y2

exists.

Solution: Write

f(x, y) =
x2 + sin2 y

4x2 + 3y2

1. Along x = 0,

f(0, y) =
sin2 y

3y2

lim
y→0

sin2 y

3y2
=

1

3

The limit of f(x, y) goes to 1/3 as (x, y) goes to (0, 0) along x = 0.

2. Along y = 0,

f(x, 0) =
x2

4x2
=

1

4

lim
y→0

f(x, 0) =
1

4

The limit of f(x, y) goes to 1/4 as (x, y) goes to (0, 0) along y = 0

3. Since 1/3 6= 1/4, we conclude that

lim
(x,y)→(0,0)

x2 + sin2 y

4x2 + 3y2

does not exist.
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Question 3. (10 pts)
Given

f(x, y) = x2 + sin(xy)

(a) Find the directional derivative of f(x, y) in the direction 〈1,−1〉 at the point (1, π);

(b) Find the tangent plane to the graph of f(x, y) at the point (1, π, 1).

Solution:

(a)
∇f = 〈fx, fy〉 = 〈2x+ y cos(xy), x cos(xy)〉

∇f(1, π) = 〈2− π,−1〉

Write
v = 〈1,−1〉

Then

Dvf(1, π) = ∇f(1, π) · v

|v|
= 〈2− π,−1〉 · 〈 1√

2
,
−1√

2
〉 =

3− π√
2

(b) Use the formula

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

From part (a), we know that

fx(1, π) = 2− π and fy(1, π) = −1

So an equation of the tangent plane is

z − 1 = (2− π)(x− 1)− (y − π)

4



Question 4. (8 pts)
Use differentials to approximate

√
0.96 · e0.01.

Solution: Set the function
f(x, y) =

√
xey.

We shall compare f(0.96, 0.01) =
√

0.96e0.01 with

f(1, 0) =
√

1e0 = 1

Compute the differential of f(x, y)

df = fxdx+ fydy = (
1

2
√
x
ey)dx+

√
xeydy

At the point (1, 0), we have

fx(1, 0) = 1/2, fy(1, 0) = 1

Moreover, dx = 0.96− 1 = −0.04 and dy = 0.01− 0 = 0.01. So we have

df = (1/2) · (−0.04) + 0.01 = −0.01

Therefore, √
0.96 · e0.01 ≈ f(1, 0) + df = 1− 0.01 = 0.99

5



Question 5. (12 pts)
For this question, choose one (and only one) of the following two versions.
(Version A) Find the local maximum, minimum and saddle points of

f(x, y) = x3 + y3 − 3x2 − 12y

(Version B) Find the absolute maximum and minimum values of

f(x, y) = x2y + 2x2 + y2

on x2 + 2y2 = 12.
I choose version (circle one) A. B.

Solution:

(Version A) First, we need to find all critical points, by solving{
fx = 3x2 − 6x = 0

fy = 3y2 − 12 = 0

So we have solutions (0,±2) and (2,±2).

Now we shall apply the second derivatives test to determine the local
max and min’s.

fxx = 6x− 6, fyy = 6y, fxy = 0

D = fxxfyy − f 2
xy = (6x− 6)(6y)

We have

(1) D(0, 2) = −72 < 0, so (0, 2) is a saddle point

(2) D(0,−2) = 72 > 0, and fxx(0,−2) = −6 < 0, so (0,−2) is a local
max

(3) D(2, 2) = 72 > 0, and fxx(2, 2) = 6 > 0, so (2, 2) is a local min

(4) D(2,−2) = −72 < 0, so (2,−2) is a saddle point
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(Version B) We shall apply Lagrange multiplier method. write

g(x, y) = x2 + 2y2 = 12

(1) Solve 
fx = λgx

fy = λgy

x2 + 2y2 = 12

i.e. 
2xy + 4x = λ(2x) =⇒ 2x(y + 2) = λ(2x)

x2 + 2y = λ(4y)

x2 + 2y2 = 12

From the first equation, we see that either x = 0 or y + 2 = λ.

(i) If x = 0, then the last equation implies that y = ±
√

6. With
a little checking of the second equation, we have the two
solutions (0,±

√
6)

(ii) If x 6= 0, then y + 2 = λ. Substitute this into the second
equation, we have

x2 + 2y = (y + 2)(4y) =⇒ x2 = 4y2 + 6y

plug this into the third equation, we have

4y2 + 6y + 2y2 = 12

so y = −2 (which implies x = ±2) or 1 (which implies x =
±
√

10). we have another four solutions

(±
√

10, 1) and(±2,−2)

(iii) compare

f(0,±
√

6) = 6, f(±
√

10, 1) = 31 and f(±2,−2) = 4

On the ellipse x2 + 2y2 = 12, the absolute max of f is
f(±
√

10, 1) = 31 and the absolute min of f is f(±2,−2) = 4.
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Question 6. (10 pts)
Given the triple integral ∫∫∫

E

(x2 + z2) dV

where E is the part of the unit ball in the first octant

(a) write the integral in xyz coordinates.

(b) write the integral in spherical coordinates.

Solution:

(a) ∫ 1

0

∫ √1−y2

0

∫ √1−x2−y2

0

(x2 + z2) dzdxdy

(b) ∫ π/2

0

∫ π/2

0

∫ 1

0

(ρ2 sin2 ϕ cos2 θ + ρ2 cos2 ϕ)ρ2 sinϕ dρdϕdθ
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Question 7. (12 pts)

(a) Determine if
F(x, y, z) = 〈2x+ exz, sin y, ex〉

is a conservative vector field. If it is, find a function f such that ∇f = F.

(b) Evaluate ∫
C

F · dr

where C is the curve

r(t) = cos(πt)i + sin(πt)j + t2k, 0 ≤ t ≤ 1

Solution:

(a) The domain of F is R3, which is simply-connected.

curlF =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2x+ exz sin y ex

∣∣∣∣∣∣ = 〈0,−(ex − ex), 0〉 = 0

So F is conservative.

To find f such that ∇f = F. First,

fx = 2x+ exz =⇒ f(x, y, z) = x2 + exz + g(y, z)

Then
fy = 0 + 0 + gy = sin y =⇒ g(y, z) = − cos y + h(z)

which implies that

f(x, y, z) = x2 + exz − cos y + h(z)

Now
fz = 0 + ex − 0 + h′(z) = ex =⇒ h(z) = C.

Therefore
f(x, y, z) = x2 + exz − cos y + C

for any constant C.

(b) By the fundamental theorem of line integral, we have∫
C

F · dr =

∫
C

∇f · dr = f(r(1))− f(r(0)) = (1/e+ C)− C = 1/e

(In fact, you can pick a number for C, say C = 1 in the expression

f(x, y, z) = x2 + exz − cos y + C

In any case, C will be cancelled out in the end. ) Notice that r(0) = (1, 0, 0)
and r(1) = (−1, 0, 1).
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Question 8. (10 pts)
Evaluate ∫∫

S

F · dS

where F(x, y, z) = 〈y, x, z〉 and S is the part of the paraboloid z = 2 − x2 − y2 above
the plane z = 1. Assume S is oriented downward.

Solution: Warning: S only consists of the part from the paraboloid. The bottom
disk is not included. So we cannot apply the divergence theorem here.

Parametrize S by
r(x, y) = 〈x, y, 2− x2 − y2〉

with domain D enclosed by the curve 1 = 2−x2−y2, that is, D is x2 +y2 ≤ 1. Then

rx × ry =

∣∣∣∣∣∣
i j k
1 0 −2x
0 1 −2y

∣∣∣∣∣∣ = 〈2x, 2y, 1〉

which gives the opposite of the given (downward) orientation.∫∫
S

F · dS

= −
∫∫

D

〈y, x, 2− x2 − y2〉 · 〈2x, 2y, 1〉dA

= −
∫∫

D

4xy + 2− (x2 + y2) dA

= −
∫ 2π

0

∫ 1

0

(4r2 sin θ cos θ + 2− r2)rdrdθ

= −
∫ 2π

0

(sin θ cos θ +
3

4
)dθ = −3π

2
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Question 9. (12 pts)
Evaluate ∮

C

xy dx

where C is the closed curve that consists of the upper half of the unit circle x2 + y2 = 1
and the part of the parabola y = x2 − 1 below the x-axis. Assume C is oriented
counterclockwise.

Solution: Use Green’s theorem (denote by D the region enclosed by C, then C is
positively oriented as the boundary of D), then we take P = xy and Q = 0,∮

C

xy dx =

∫∫
D

−xdA

=

∫ 1

−1

∫ √1−x2
x2−1

−xdydx

= −
∫ 1

−1
x(x2 − 1)− x

√
1− x2dx

= −
∫ 1

−1
x(x2 − 1)dx+

∫ 1

−1
x
√

1− x2dx

= 0 + (−1/2)

∫ 0

0

u1/2du (where u = 1− x2)

= 0
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Question 10. (8 pts)
Evaluate ∫ 1

0

∫ √4−x2
√
1−x2

cos(x2 + y2)dydx+

∫ 2

1

∫ √4−x2
0

cos(x2 + y2)dydx.

Hint: you need to rewrite the integral.

Solution: First we need to figure out the domain of integration. After putting
the two pieces together (you should draw a picture), we see that the domain is an
annulus in the first quadrant. So in polar coordinates, the two integrals can be
combines together into one as follows:∫ π/2

0

∫ 2

1

cos(r2)rdrdθ =

∫ π/2

0

sin(r2)

2

∣∣∣∣2
1

dθ

=
sin(4)− sin(1)

4
· π
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Question 11. (12 pts)
Evaluate ∫∫

S

F · dS

where F = 〈2exy,−exy2 + y, z + cosx〉 and S is the surface of the solid bounded by the
cylinder x2 + y2 = 1 and the planes z = −1 and x + y + z = 1. Assume S is oriented
outward.

Solution: Use divergence theorem (note S is positively oriented)∫∫
S

F · dS =

∫∫∫
E

divF dV

=

∫∫∫
D

(2exy − 2exy + 1 + 1) dV =

∫∫∫
E

2 dV

use cylindrical coordinates

=

∫ 2π

0

∫ 1

0

∫ 1−r cos θ−r sin θ

−1
2rdzdrdθ

=

∫ 2π

0

∫ 1

0

2(2− r cos θ − r sin θ)rdrdθ = · · · = 4π
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Question 12. (12 pts)
Evaluate ∫∫

S

curlF · dS

where F = exy sin zi + xz2j + yzk and S is the hemisphere x =
√

1− y2 − z2, oriented
towards the positive x-axis.

Solution: Use Stoke’s theorem, the boundary of S is the unit circle y2 + z2 = 1 in
yz-plane, oriented counterclockwise. Parametrize C by

r(θ) = 〈0, cos θ, sin θ〉

with 0 ≤ θ ≤ 2π.∫∫
S

curlF · dS =

∫
C

F · dr

=

∫ 2π

0

〈sin(sin θ), 0, cos θ sin θ〉 · 〈0,− sin θ, cos θ〉 dθ

=

∫ 2π

0

cos2 θ sin θdθ = · · · = 0

Alternatively, Use Stoke’s theorem again, but this time choose S1 to be the disk
y2 + z2 ≤ 1 is yz-plane, oriented towards the positive x-axis. Then∫∫

S

curlF · dS =

∫∫
S1

curlF · dS

Now

curlF =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

exy sin z xz2 yz

∣∣∣∣∣∣ = 〈z − 2xz, exy cos z, z2 − xexyz2〉

The surface S1 can be parametrized by

r(y, z) = 〈0, y, z〉

with domain D : y2 + z2 ≤ 1.

ry × rz = 〈1, 0, 0〉 agrees with the chosen orientation∫∫
S

curlF · dS =

∫∫
S1

curlF · dS =

∫∫
D

zdA =

∫ 2π

0

∫ 1

0

r sin θ rdrdθ = · · · = 0
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